Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2657: 53-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149522

RESUMO

Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.


Assuntos
Celulose , Celulossomas , Celulose/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Genômica , Celulossomas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547488

RESUMO

ß-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, ß-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum ß-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Evolução Molecular Direcionada , Temperatura Alta , beta-Glucosidase , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Estabilidade Enzimática/genética , Mutação de Sentido Incorreto , beta-Glucosidase/química , beta-Glucosidase/genética
3.
Methods Enzymol ; 617: 241-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30784404

RESUMO

Cell-surface display of designer cellulosomes complexes has attracted increased interest in recent years. These engineered microorganisms can efficiently degrade lignocellulosic biomass that represents an abundant resource for conversion into fermentable sugars, suitable for production of biofuels. The designer cellulosome is an artificial enzymatic complex that mimics the architecture of the natural cellulosome and allows the control of the positions, type, and copy number of the cellulosomal enzymes within the complex. Lactobacillus plantarum is an attractive candidate for metabolic engineering of lignocellulosic biomass to biofuels, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize hexose sugars. In recent years, successful expression of a variety of designer cellulosomes on the cell surface of this bacterium has been demonstrated using the cell-consortium approach. This strategy minimized genomic interference on each strain upon genetic engineering, thereby maximizing the ability of each strain to grow, express, and secrete each enzyme. In addition, this strategy allows stoichiometric control of the cellulosome elements and facile exchange of the secreted proteins. A detailed procedure for display of designer cellulosomes on the cell surface of L. plantarum is described in this chapter.


Assuntos
Celulossomas/genética , Lactobacillus plantarum/genética , Proteínas de Bactérias/genética , Eletroporação/métodos , Expressão Gênica , Lactobacillus plantarum/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Plasmídeos/genética
4.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453253

RESUMO

Heterologous display of enzymes on microbial cell surfaces is an extremely desirable approach, since it enables the engineered microbe to interact directly with the plant wall extracellular polysaccharide matrix. In recent years, attempts have been made to endow noncellulolytic microbes with genetically engineered cellulolytic capabilities for improved hydrolysis of lignocellulosic biomass and for advanced probiotics. Thus far, however, owing to the hurdles encountered in secreting and assembling large, intricate complexes on the bacterial cell wall, only free cellulases or relatively simple cellulosome assemblies have been introduced into live bacteria. Here, we employed the "adaptor scaffoldin" strategy to compensate for the low levels of protein displayed on the bacterial cell surface. That strategy mimics natural elaborated cellulosome architectures, thus exploiting the exponential features of their Lego-like combinatorics. Using this approach, we produced several bacterial consortia of Lactobacillus plantarum, a potent gut microbe which provides a very robust genetic framework for lignocellulosic degradation. We successfully engineered surface display of large, fully active self-assembling cellulosomal complexes containing an unprecedented number of catalytic subunits all produced in vivo by the cell consortia. Our results demonstrate that the enzyme stability and performance of the cellulosomal machinery, which are superior to those seen with the equivalent secreted free enzyme system, and the high cellulase-to-xylanase ratios proved beneficial for efficient degradation of wheat straw.IMPORTANCE The multiple benefits of lactic acid bacteria are well established in health and industry. Here we present an approach designed to extensively increase the cell surface display of proteins via successive assembly of interactive components. Our findings present a stepping stone toward proficient engineering of Lactobacillus plantarum, a widespread, environmentally important bacterium and potent microbiome member, for improved degradation of lignocellulosic biomass and advanced probiotics.


Assuntos
Membrana Celular/metabolismo , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Celulossomas/metabolismo , Lactobacillus plantarum/metabolismo , Celulase/genética , Microbioma Gastrointestinal
5.
Biotechnol J ; 12(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28901714

RESUMO

Cellulose deconstruction can be achieved by three distinct enzymatic paradigms: free enzymes, multifunctional enzymes, and self-assembled, multi-enzyme complexes (cellulosomes). To study their comparative efficiency, the simple and efficient cellulolytic system of the aerobic bacterium, Thermobifida fusca, is developed as an enzymatic model. In previous studies, most of its cellulases are successfully converted to the cellulosomal mode and exhibited high cellulolytic activities, except for Cel6B, a key exoglucanase of the T. fusca enzymatic system. Here, the impact of the modular organization of Cel6B on enzymatic activity is investigated. The position of the cellulose-binding module (CBM), its family and linker segment are shown to affect activity. Surprisingly, exchange of the native family-2 CBM to family-3 generates an increase in Cel6B activity on cellulosic substrates. Conversion of Cel6B to the cellulosomal mode by fusing a cohesin to the catalytic module enables formation of divalent enzyme complexes with dockerin-bearing enzymes. The resultant pseudo-cellulosomes, containing Cel6B combined with endoglucanase Cel5A, exhibits enhanced enzymatic activity, compared to mixtures of wild-type enzymes or bifunctional enzymes, unlike similar pseudo-cellulosomes containing endoglucanase Cel6A or proccessive endoglucanase Cel9A. Insight into the different enzymatic paradigms benefits ongoing development of efficient cellulolytic systems for conversion of plant-derived biomass into valuable sugars. NOVELTY STATEMENT: The protein engineering of the modular arrangement of a key exoglucanase from a highly cellulolytic bacterium, Thermobifida fusca, served to explore and compare three major enzymatic paradigms for cellulose degradation. This approach revealed highly active chimaeric forms of the exoglucanase that act in synergy together with a potent endoglucanase in bifunctional enzymes or divalent pseudo-cellulosome-like complexes. Such engineered enzymes could be further integrated into larger enzymatic complexes, thereby providing a significant step forward towards conversion of the entire T. fusca free cellulolytic system into the cellulosomal modex and the enhanced conversion of cellulosic biomass into soluble sugars.


Assuntos
Actinomycetales/enzimologia , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Celulossomas/enzimologia , Actinomycetales/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular , Celulase/genética , Proteínas Cromossômicas não Histona , Ensaios Enzimáticos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Hidrólise , Proteínas Recombinantes
6.
Methods Mol Biol ; 1588: 93-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28417363

RESUMO

Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.


Assuntos
Celulossomas/metabolismo , Firmicutes/metabolismo , Células Vegetais/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Clostridium/citologia , Clostridium/metabolismo , Firmicutes/citologia
7.
Biotechnol Biofuels ; 9: 164, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493686

RESUMO

BACKGROUND: The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostability, either by SCHEMA, a structure-guided, site-directed protein recombination method, or by consensus-guided mutagenesis combined with random mutagenesis using error-prone PCR, respectively. A thermostable ß-glucosidase BglA mutant was also selected from a library generated by error-prone PCR that will assist the two cellulases in their methodic deconstruction of crystalline cellulose. The effects of a thermostable scaffoldin versus those of a largely mesophilic scaffoldin were also examined. By improving the stability of the enzyme subunits and the structural component, we aimed to improve cellulosome-mediated deconstruction of cellulosic substrates. RESULTS: The results demonstrate that the combination of thermostable enzymes as free enzymes and a thermostable scaffoldin was more active on the cellulosic substrate than the wild-type enzymes. Significantly, "thermostable" designer cellulosomes exhibited a 1.7-fold enhancement in cellulose degradation compared to the action of conventional designer cellulosomes that contain the respective wild-type enzymes. For designer cellulosome formats, the use of the thermostabilized scaffoldin proved critical for enhanced enzymatic performance under conditions of high temperatures. CONCLUSIONS: Simple improvement in the activity of a given enzyme does not guarantee its suitability for use in an enzyme cocktail or as a designer cellulosome component. The true merit of improvement resides in its ultimate contribution to synergistic action, which can only be determined experimentally. The relevance of the mutated thermostable enzymes employed in this study as components in multienzyme systems has thus been confirmed using designer cellulosome technology. Enzyme integration via a thermostable scaffoldin is critical to the ultimate stability of the complex at higher temperatures. Engineering of thermostable cellulases and additional lignocellulosic enzymes may prove a determinant parameter for development of state-of-the-art designer cellulosomes for their employment in the conversion of cellulosic biomass to soluble sugars.Graphical abstractConversion of conventional designer cellulosomes into thermophilic designer cellulosomes.

8.
mBio ; 7(2): e00083, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048796

RESUMO

UNLABELLED: Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities-the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes-4 xylanases and 4 cellulases-thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. IMPORTANCE: Plant cell wall residues represent a major source of renewable biomass for the production of biofuels such as ethanol via breakdown to soluble sugars. The natural microbial degradation process, however, is inefficient for achieving cost-effective processes in the conversion of plant-derived biomass to biofuels, either from dedicated crops or human-generated cellulosic wastes. The accumulation of the latter is considered a major environmental pollutant. The development of designer cellulosome nanodevices for enhanced plant cell wall degradation thus has major impacts in the fields of environmental pollution, bioenergy production, and biotechnology in general. The findings reported in this article comprise a true breakthrough in our capacity to produce extended designer cellulosomes via synthetic biology means, thus enabling the assembly of higher-order complexes that can supersede the number of enzymes included in a single multienzyme complex.


Assuntos
Celulossomas/genética , Celulossomas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Celulose/metabolismo , Hidrólise , Ligação Proteica
9.
PLoS One ; 10(5): e0127326, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024227

RESUMO

Degradation of cellulose is of major interest in the quest for alternative sources of renewable energy, for its positive effects on environment and ecology, and for use in advanced biotechnological applications. Due to its microcrystalline organization, celluose is extremely difficult to degrade, although numerous microbes have evolved that produce the appropriate enzymes. The most efficient known natural cellulolytic system is produced by anaerobic bacteria, such as C. thermocellum, that possess a multi-enzymatic complex termed the cellulosome. Our laboratory has devised and developed the designer cellulosome concept, which consists of chimaeric scaffoldins for controlled incorporation of recombinant polysaccharide-degrading enzymes. Recently, we reported the creation of a combinatorial library of four cellulosomal modules comprising a basic chimaeric scaffoldin, i.e., a CBM and 3 divergent cohesin modules. Here, we employed selected members of this library to determine whether the position of defined cellulolytic enzymes is important for optimized degradation of a microcrystalline cellulosic substrate. For this purpose, 10 chimaeric scaffoldins were used for incorporation of three recombinant Thermobifida fusca enzymes: the processive endoglucanase Cel9A, endoglucanase Cel5A and exoglucanase Cel48A. In addition, we examined whether the characteristic properties of the T. fusca enzymes as designer cellulosome components are unique to this bacterium by replacing them with parallel enzymes from Clostridium thermocellum. The results support the contention that for a given set of cellulosomal enzymes, their relative position within a scaffoldin can be critical for optimal degradation of microcrystaline cellulosic substrates.


Assuntos
Proteínas de Bactérias , Celulase , Clostridium thermocellum , Proteínas Recombinantes de Fusão , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulase/química , Celulase/genética , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Biblioteca Gênica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
10.
Carbohydr Res ; 389: 78-84, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24680546

RESUMO

Improved stability of cellulosomal enzymes is of great significance in order to provide efficient degradation of cellulosic derivatives for production of biofuels. In previous reports, we created a quadruple mutant of the endoglucanase Cel8A from Clostridium thermocellum resulting from a combination of both random error-prone PCR and a bioinformatics-based consensus mutagenesis approach. The quadruple mutant exhibited an increased half-life of activity by 14-fold at 85°C with no apparent loss of catalytic activity compared to the wild-type form. Connection of the wild-type enzyme to its respective cohesin partner conferred increased thermostability, but no increase was observed for the cohesin-complexed mutant enzyme. The mutant and the wild-type enzymes were integrated into divalent chimeric scaffoldins with a family 48 exoglucanase partner, and the cellulose-degradation activities of resultant designer cellulosomes were examined. Despite the heightened thermostability of the mutant as a free enzyme, its substitution for the wild-type endoglucanase within the cellulosome context failed to exhibit an improvement in overall degradation of cellulose.


Assuntos
Celulase/química , Celulase/genética , Celulossomas/enzimologia , Engenharia de Proteínas , Temperatura , Carboximetilcelulose Sódica/metabolismo , Celulase/metabolismo , Clostridium thermocellum/citologia , Clostridium thermocellum/enzimologia , Estabilidade Enzimática , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...